โ† Back to Blog
ResearchStrategyInsightsCase StudyAIJanuary 29, 2026

To see the future of research, just look East

To see the future of research, just look East

We spend a lot of time debating AI's impact on research methodology. But I think we're missing the bigger transformation happening right under our noses.

Shein is showing us what the future looks like. And it's not "faster surveys". Here's what they've actually built:

The LATR Model (Large-scale Automated Test and Reorder)

Shein monitors realtime what is trendin on TikTok and other social media. When it's algorithms spot a design with potential, it commissions a small order from one of its factories... often just a few dozen pieces... which it then floats on its channels to see if consumers are interested. If they are, production scales up immediately.

The scale is staggering: Shein adds thousands and thousands of items per day to its app. Estimates suggest LATR generated about 20 times as many new items as H&M or Zara.

What makes it fascination to me is that this isn't just trend detection on Social Media (we've been able to do this for years already). It's a closed loop. The same system that measures demand also shapes it:

  • Algorithms detect emerging trends from social media and search data
  • Small batches get produced and listed on the platform
  • Shein's recommendation engine pushes items to users most likely to engage
  • A user scrolling TikTok sees a viral outfit one day... and finds near-identical styles in their Shein feed the next
  • High performers get scaled AND pushed harder via personalized feeds
  • Micro-influencer "hauls" amplify the trend further
  • More engagement data flows back into the system
  • Rinse and repeat....
  • Blog image

    When Shein "discovers" a trend is working, they're actively amplifying it through algorithmic recommendations and influencer seeding. They're not passively observing organic demand. They uses data and algorithms to match consumer demand for designs to the capabilities of particular members of its manufacturing network, and keep close tabs on manufacturer performance as closely as it monitors customer preferences.

    But it's not fully automated... and that's the part we should pay attention to.

    Despite the AI-driven machinery, human judgment remains at critical chokepoints. For instance, human experts still translate trend-signals into actual products: case studies describe internal planning and design teams working from algorithmic trend data rather than traditional seasonal intuition. Suppliers submit designs that go through human approval before even small test batches are produced. And Shein monitors manufacturer performance closely... poor performers can be dropped from the network.

    So where humans still matter most:

  • Design translation and judgement: Converting trend signals into manufacturable products
  • Quality gating: Approving designs before production begins
  • Supplier orchestration:Managing the thousands-strong factory network
  • System design:Deciding what the algorithms optimize for
  • This reminds me of the O-Ring Theory I wrote about recently: in complex systems, human judgment at key steps protects against cascading quality failures. The AI handles volume and speed, but one bad decision at a chokepoint can contaminate everything downstream.

    My interpretation: this is market research as the operating system.I'd call this anIntelOS... an Intelligence Operating System: what happens when consumer intelligence stops being a project you commission and becomes the continuous nervous system running the business. Sensing. Testing. Amplifying. Learning. Repeat.

    The traditional research model: Insight โ†’ Report โ†’ Decision โ†’ Action (weeks/months)

    The IntelOS model: Signal โ†’ Test โ†’ Amplify โ†’ Scale/Kill โ†’ Learn โ†’ Signal (days/weeks)

    What does this mean for our industry?

  • The research "project" is evolving:Embedded, continuous intelligence is supplementing discrete studies. Winning companies are weaving insight generation into every operational decision.
  • Measurement and intervention are merging:Traditional research maintains separation: we observe, then we act. But when your testing platform IS your sales platform IS your amplification engine, that line blurs. You're not just measuring demand... you're co-creating it in real time.
  • Behavioral data becomes even more important:Everything a customer does on the app, from browsing patterns to repeated views of specific items, can be recorded, analyzed, and fed back into the supply chain almost instantaneously.
  • Humans don't disappear...they reposition: Design and planning teams aren't doing traditional creative forecasting... they're interpreting machine-generated signals and making judgment calls the AI can't. The job becomes: quality control, system design, and deciding what the algorithms should optimize for.
  • So the question for ourselves is: are we building embedded intelligence capabilities and positioning ourselves at the critical human judgment points... or are we only focused on selling projects that sit outside the operational loop entirely?

    NB 1:The above is based on whatever i could find in public sources both from Shein and external parties

    NB 2.I admire what Shein is doing with their operating model. At the same time i don't like at all what Fast Fashion (Shein being the leader i guess...) is doing to our planet

    SOURCES:

  • Harvard Business School Working Knowledge: "How SHEIN and Temu Conquered Fast Fashionโ€”and Forged a New Business Model" (2023)https://www.library.hbs.edu/working-knowledge/how-shein-and-temu-conquered-fast-fashion-and-forged-a-new-business-model
  • Shein Group: "Our On-Demand Business Model" (Official company page)https://www.sheingroup.com/our-business/our-business-model/
  • Harper's Bazaar: "Everything That Happens Before You Hit 'Add to Cart'" (2024)https://www.harpersbazaar.com/fashion/a62324714/shein-on-demand-model/
  • Gad Allon / Wharton: "Unraveling Shein's Supply Chain: Foundation, Reshoring, and Controversy" (2023)https://gadallon.substack.com/p/unraveling-sheins-supply-chain-foundation
  • Related Articles

    Want to discuss further?

    I'd love to hear your thoughts on this topic.

    Get in Touch